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ADDENDUM

Integrity bases for local invariants of composite quantum
systems

R I A Davis†, R Delbourgo and P D Jarvis
School of Mathematics and Physics, University of Tasmania, GPO Box 252-21, Hobart,
Tas 7001, Australia

Received 3 March 2000

Abstract. Unitary group branchings appropriate to the calculation of local invariants of density
matrices of composite quantum systems are formulated using the method of S-function plethysms.
From this, the generating function for the number of invariants at each degree in the density
matrix can be computed. For the case of two two-level systems, the generating function is
F(q) = 1+q +4q2 +6q3 +16q4 +23q5 +52q6 +77q7 +150q8 +224q9 +396q10 +583q11 +O(q12).
Factorization of such series leads in principle to the identification of an integrity basis of
algebraically independent invariants. This Addendum replaces Appendix B of our recent paper
(2000 J. Phys. A: Math. Gen. 33 1895–1914) which is incorrect.

The measurement problem of detecting nonlocal differences between composite quantum
systems (for example, degrees of entanglement [1]) is of great importance for applications to
quantum computation and communication. At root the question boils down to the identification
of invariants with respect to unitary transformations which can be effected by local operations
on each subsystem separately. For the case of two subsystems of dimensions N1 and N2,
the N1N2 ×N1N2 density matrix ρ can be regarded in partition labelling‡ as an element
of the defining representation {1} of U(N1

2N2
2) branching to the reducible {1̄}{1}×{1̄}{1}

representation of U(N1)×U(N2) via ({1̄}×{1})×({1̄}×{1}) of (U(N1)×U(N1))×(U(N2)×U(N2))

within {1} × {1} of U(N1
2) × U(N2

2). Polynomial invariants of degree n � 0 are thus
U(N1) × U(N2) singlets of the totally symmetric Kronecker power {1} ⊗ {n} ≡ {n} of
U(N1

2N2
2). According to the standard rules for plethysms [2, 3] the branchings

U(N1
2N2

2) ⊃ U(N1
2)×U(N2

2) ⊃ U(N1)×U(N2) (1)

for this plethysm are

{1} ⊗ {n} = ({1}×{1}) ⊗ {n} =
∑
σ 	 n

{σ }×{σ ◦ n} ≡
∑
σ 	 n

{σ }×{σ }

=
∑

κ 	N1 n

λ 	N2 n

{κ̄}{κ ◦ σ } × {λ̄}{λ ◦ σ }. (2)

Here κ and λ must be N1- and N2-part partitions of n respectively in order that the corresponding
representations of U(N1) and U(N2) be nonvanishing. However, since the product of two

† Present address: Department of Physics, University of Queensland, St Lucia, Brisbane 4072, Australia.
‡ Partition labelling for group representations is developed in [2] where extensive rules for representation products
and branchings are presented.
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representations in a unitary group will contain a singlet if and only if they are contragredient,
the only singlets occurring are those for which both κ ◦ σ � κ and λ ◦ σ � λ, or reciprocally
σ ∈ λ ◦ λ and σ ∈ κ ◦ κ . The number of singlets Fn at degree n is thus

Fn =
∑

κ 	N1 n

λ 	N2 n

nκλ (3)

where nκλ counts the number of σ satisfying this condition†. The computation thus reduces
to the evaluation of inner products ◦ of N1- and N2-part partitions of n (Kronecker products
in the symmetric group Sn) and leads to the generating function

F(q) =
∞∑

n=0

Fnq
n. (4)

F(q) is difficult to compute in closed form, but for specific cases can be evaluated to any
desired degree (using, for example, the package SCHUR‡). For example, at degree 8 for the
2×2 case, we find

{6, 2} ◦ {6, 2} = {8} + {71} + 2{62} + {612} + {53} + 2{521} + {513} + {42} + {431} + {422}
{5, 3} ◦ {5, 3} = {8} + {71} + 2{62} + {612} + {53} + 2{521} + {513} + {42} + 2{431} (5)

+2{422} + {4212} + {322} + {3212} + {3221}
leading to a contribution (including multiplicity) of n{6,2},{5,3} = n{5,3},{6,2} = 18 to F8. In this
way we calculate

F(q) = 1 + q + 4q2 + 6q3 + 16q4 + 23q5 + 52q6 + 77q7 + 150q8 + 224q9 + 396q10

+583q11 + O(q12). (6)

This generating function should be compared with the Molien series [4] defined via group
integration,

P(z) =
∫

g∈G

dµG(g)

det(1l − zg)
. (7)

The equivalence between the two series can be readily established in the S-function formalism.
Write g as the element of U(N2

1 N2
2 ) corresponding to the adjoint action of U(N1)×U(N2)

on ρ. Characters of group representations are generated by taking traces 〈gn〉 of powers of g,
and hence are polynomials of the class parameters (x1 = exp iφ1, x2 = exp iφ2, . . .). From
the integrand of (7) we have directly

[det(1l − zg)]−1 =
∏

i

1

(1 − zxi)
=

∞∑
n=0

znS{n}(x) (8)

where a standard form of the Cauchy product identity has been used [6] (the complete Schur
functions S{n}(x) correspond to one-part partitions; for one argument S{n}(z) = zn). The
integrand at degree n thus is indeed the reducible U(N1)×U(N2) character corresponding
to the nth symmetrized power {n} of the fundamental representation of U(N2

1 N2
2 ), and the

invariant integration over U(N1)×U(N2) serves to project the identity representation§.
Makhlin [5] has recently examined the 2×2 case and proposed a concrete set of 18 local

invariants for mixed-state density matrices. Definitive confirmation of the completeness of
such a set is in principle provided by a factorization of F(q) which establishes an integrity

† Also σ should have at most min(N1
2, N2

2) parts. In Appendix B of our paper [1], nκλ was erroneously taken as 1.
‡ SCHUR Software Associates, Christchurch, New Zealand.
§ F(q) in (6) agrees with P(z) quoted by [4] up to degree 11.
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basis presentation of the algebra of invariants in terms of a number of free generators together
with additional relations. Unfortunately (6) is not computed to sufficiently many terms to
deduce an unequivocal factorization, but, for example, the form

G(x) ≡ (1 + x4)(1 + x5)(1 + x6)4(1 + x7)2(1 + x8)2(1 + x9)2

(1 − x)(1 − x2)3(1 − x3)2(1 − x4)3

= 1 + x + 4x2 + 6x3 + 16x4 + 23x5 + 52x6 + +77x7 + 150x8 + 224x9

+398x10 + 589x11 + 982x12 + O(x13)

may be noted. This has a denominator set signalling nine free generators, including one at
degree 1 (the trace of ρ) and three at degree 2 (the traces of the squares of ρ and of the reduced
density matrices). The total count of nine is to be expected from the dimensionality of the
coset manifold SU(4)/S(U(2)×U(2)), namely 8 = 15 − (8 − 1) plus the overall singlet
trace. To finite degree it is not possible uniquely to identify the denominator factors, and the
set of free generators given by G(x) differs from that implied by [5]. Of course, the saturation
of terms in G(x) in (9) compared with F(q) in (6) beyond degree 9 also requires that some
of the numerator factors (corresponding to invariant quantities whose squares or products are
relations in the algebra) should be combined together more economically. Nonetheless, the
total count in G(x) of 21 invariants (9 denominator plus 12 numerator quantities), and their
degrees, is in agreement with [4].
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